Пособия по проектированию оснований зданий и сооружений к снип 20201-83

Настоящее Пособие разработано к СНиП 2.02.01-83 и детализируют отдельные положения этого документа (за исключением вопросов, связанных с особенностями проектирования оснований опор мостов и труб по насыпями).

В Пособии рассмотрены вопросы номенклатуры грунтов и методов определения расчетных значений их характеристик, принципы проектирования оснований и прогнозирования изменения уровня подземных вод, вопросы глубины заложения фундаментов, методы расчета оснований по деформациям и по несущей способности, особенности проектирования оснований зданий и сооружений, возводимых на региональных видах грунтов, а также расположенных в сейсмических районах и на подрабатываемых территориях.

Текст СНиП 2.02.01-83 отмечен в Пособии вертикальной чертой слева, в скобках указаны соответствующие номера пунктов, таблиц и формул СНиП.

Пособие разработано НИИОСП им. Герсеванова (д-р техн. наук, проф. Е.А. Сорочан — разд. 1, подраздел «Расчет оснований по деформациям» разд. 2 («Определение расчетного сопротивления грунта основания», «Расчет деформации оснований с учетом разуплотнения грунта при разработке котлована»), разд. 4; канд. техн. наук А.В. Вронский — подразделы «Общие указания», «Нагрузки», «Расчет оснований по деформациям» («Общие положения», «Расчет деформаций оснований» и «Предельные деформации основания»), «Мероприятия по уменьшению деформаций оснований и влияния их на сооружения» разд. 2; канд. техн. наук О.И. Игнатова — подразделы «Нормативные и расчетные значения характеристик грунтов» и «Классификация грунтов» разд. 2; канд. техн. наук Л.Г. Мариупольский — подраздел «Методы определения деформационных и прочностных характеристик грунтов» разд. 2; д-р техн. наук В.О. Орлов — подраздел «Глубина заложения фундаментов» разд. 2; канд. техн. наук А.С. Снарский — подраздел «Расчет оснований по несущей способности» разд. 2; д-р техн. наук, проф. В.И. Крутов — разд. 3; д-р техн. наук П.А. Коновалов — разд. 5; канд. техн. наук В.П. Петрухин — разд. 7; канд. техн. наук Ю.М. Лычко — разд. 8; канд. техн. наук А.И. Юшин — разд. 9; д-р техн. наук, проф. В.А. Ильичев и канд. техн. наук Л.Р. Ставницер — разд. 10 при участии института «Фундаментпроект» Минмонтажспецстроя СССР (инж. М.Л. Моргулис — подраздел «Расчет оснований по несущей способности» разд. 2), ПНИИИС Госстроя СССР (канд. техн. наук Е.С. Дзекцер — подраздел «Подземные воды» разд. 2), МИСИ им. Куйбышева (д-р техн. наук, проф. М.В. Малышев и инж. Н.С. Никитина — подраздел «Определение осадки за пределами линейной зависимости между напряжениями и деформациями» разд. 2; д-р техн. наук, проф. Э.Г. Тер-Мартиросян, канд. техн. наук Д.М. Ахпателов и инж. И.М. Юдина — подраздел «Расчет деформаций оснований с учетом разуплотнения грунта при разборке котлована» разд. 2), Днепропетровского инженерно-строительного института Минвуза УССР (д-р техн. наук, проф. В.Б. Швец — разд. 6) и института «Энергосетьпроект» Минэнерго СССР (инженеры Н.И. Швецова и Ф.П. Лобаторин — разд. 11).

Пособие разработано под общей редакцией д-ра техн. наук, проф. Е.А. Сорочана.

Фундаменты под колонны (к СНиП 2.03.01-84, 2.02.01-83)

Пособие по проектированию фундаментов на естественном основании под колонны зданий и сооружений

Предлагаем прочесть документ: Пособие по проектированию фундаментов на естественном основании под колонны зданий и сооружений. Если у Вас есть информация, что документ «Фундаменты под колонны (к СНиП 2.03.01-84, 2.02.01-83)» не является актуальным, просим написать об этом в редакцию сайта.

СНиП 2.02.01-83* — Основания зданий и сооружений

СНиП 2.02.01-83 регулируют выполнение проектировочных работ в отношении оснований зданий и сооружений. Эти нормы предполагают проведение предварительных геологических, геодезических и гидрометеорологических работ, использование опыта возведения оснований в имеющихся условиях – гидрогеологических, инженерно-геологических и др.
Проектировщики оснований зданий и сооружений используют в своей работе СНиП 2.02.01-83 при выполнении расчетов по допустимым нагрузкам с учетом нормативных значений характеристик грунтов, а также наличия и глубины залегания подземных вод. Данные правила позволяют выбрать оптимальную глубину заложения фундамента и подобрать его требуемый тип.

СНиП 2.02.01-83* — Основания зданий и сооружений

СТРОИТЕЛЬНЫЕ НОРМЫ И ПРАВИЛА

ОСНОВАНИЯ ЗДАНИЙ И СООРУЖЕНИЙ

РАЗРАБОТАНЫ НИИОСП им. Н.М. Герсеванова Госстроя СССР (руководитель темы — д-р техн. наук, проф. Е.А. Сорочан, ответственный исполнитель — канд. техн. наук А.В. Вронский), институтом Фундаментпроект Минмонтажспецстроя СССР (исполнители — канд. техн. наук Ю.Г. Трофименков и инж. М.Л. Моргулис) с участием ПНИИИС Госстроя СССР, производственного объединения Стройизыскания Госстроя РСФСР, института Энергосетьпроект Минэнерго СССР и ЦНИИС Минтрансстроя.

ВНЕСЕНЫ НИИОСП им. Н.М. Герсеванова Госстроя СССР

ПОДГОТОВЛЕНЫ К УТВЕРЖДЕНИЮ Главным управлением технического нормирования и стандартизации Госстроя СССР (исполнитель — О.Н. Сильницкая).

СНиП 2.02.01-83* является переизданием СНиП 2.02.01-83 с изменениями № 1, 2, утвержденными постановлениями Госстроя СССР от 9 декабря 1985 г. № 211, от 1 июля 1987 г № 125

Номера пунктов и приложений, в которые внесены изменения, отмечены звездочкой.

При пользовании нормативным документом следует учитывать утвержденные изменения строительных норм и правил и государственных стандартов, публикуемые в журнале «Бюллетень строительной техники» и информационном указателе «Государственные стандарты»

Государственный комитет СССР

по делам строительства

Строительные нормы и правила

Основания зданий и сооружений

СНиП II-15-74 и СН 475-75

им. Н.М. Герсеванова

Утверждены постановлением Государственного комитета СССР по делам строительства

от 5 декабря 1983 г. № 311

в действие 1 января 1985 г.

Настоящие нормы должны соблюдаться при проектировании оснований зданий и сооружений1.

1 Далее для краткости, где это возможно, вместо термина «здания и сооружения» используется термин «сооружения».

Настоящие нормы не распространяются на проектирование оснований гидротехнических сооружений, дорог, аэродромных покрытий, сооружений, возводимых на вечномерзлых грунтах, а также оснований свайных фундаментов, глубоких опор и фундаментов под машины с динамическими нагрузками.

Положения данных норм соответствуют СТ СЭВ 5507-86*.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Основания сооружений должны проектироваться на основе:

а) результатов инженерно-геодезических, инженерно-геологических и инженерно-гидрометеорологических изысканий для строительства;

б) данных, характеризующих назначение, конструктивные и технологические особенности сооружения, нагрузки, действующие на фундаменты, и условия его эксплуатации;

в) технико-экономического сравнения возможных вариантов проектных решений (с оценкой по приведенным затратам) для принятия варианта, обеспечивающего наиболее полное использование прочностных и деформационных характеристик грунтов и физико-механических свойств материалов фундаментов или других подземных конструкций.

При проектировании оснований и фундаментов следует учитывать местные условия строительства, а также имеющийся опыт проектирования, строительства и эксплуатации сооружений в аналогичных инженерно-геологических и гидрогеологических условиях.

1.2. Инженерные изыскания для строительства должны проводиться в соответствии с требованиями СНиП, государственных стандартов и других нормативных документов по инженерным изысканиям и исследованиям грунтов для строительства.

В районах со сложными инженерно-геологическими условиями: при наличии грунтов с особыми свойствами (просадочные, набухающие и др.) или возможности развития опасных геологических процессов (карст, оползни и т.п.), а также на подрабатываемых территориях инженерные изыскания должны выполняться специализированными организациями.

1.3. Грунты оснований должны именоваться в описаниях результатов изысканий, проектах оснований, фундаментов и других подземных конструкций сооружений согласно ГОСТ 25100-82*.

1.4. Результаты инженерных изысканий должны содержать данные, необходимые для выбора типа оснований и фундаментов, определения глубины заложения и размеров фундаментов с учетом прогноза возможных изменений (в процессе строительства и эксплуатации) инженерно-геологических и гидрогеологических условий площадки строительства, а также вида и объема инженерных мероприятий по ее освоению.

Проектирование оснований без соответствующего инженерно-геологического обоснования или при его недостаточности не допускается.

1.5. Проектом оснований и фундаментов должна быть предусмотрена срезка плодородного слоя почвы для последующего использования в целях восстановления (рекультивации) нарушенных или малопродуктивных сельскохозяйственных земель, озеленения района застройки и т.п.

1.6. В проектах оснований и фундаментов ответственных сооружений, возводимых в сложных инженерно-геологических условиях, следует предусматривать проведение натурных измерений деформаций основания.

Натурные измерения деформаций основания должны также предусматриваться в случае применения новых или недостаточно изученных конструкций сооружений или их фундаментов, а также если в задании на проектирование имеются специальные требования по измерению деформаций основания.

2. ПРОЕКТИРОВАНИЕ ОСНОВАНИЙ

2.1. Проектирование оснований включает обоснованный расчетом выбор:

типа основания (естественное или искусственное);

типа, конструкции, материала и размеров фундаментов (мелкого или глубокого заложения; ленточные, столбчатые, плитные и др.; железобетонные, бетонные, бутобетонные и др.);

мероприятий, указанных в пп. 2.67 — 2.71, применяемых при необходимости уменьшения влияния деформаций оснований на эксплуатационную пригодность сооружений.

2.2. Основания должны рассчитываться по двум группам предельных состояний: первой — по несущей способности и второй — по деформациям.

Основания рассчитываются по деформациям во всех случаях и по несущей способности — в случаях, указанных в п. 2.3.

В расчетах оснований следует учитывать совместное действие силовых факторов и неблагоприятных влияний внешней среды (например, влияние поверхностных или подземных вод на физико-механические свойства грунтов).

2.3. Расчет оснований по несущей способности должен производиться в случаях, если:

а) на основание передаются значительные горизонтальные нагрузки (подпорные стены, фундаменты распорных конструкций и т.п.), в том числе сейсмические;

б) сооружение расположено на откосе или вблизи откоса;

Читайте так же:  Приказ минздравсоцразвития 181н

в) основание сложено грунтами, указанными в п. 2.61;

г) основание сложно скальными грунтами.

Расчет оснований по несущей способности в случаях, перечисленных в подпунктах «а» и «б», допускается не производить, если конструктивными мероприятиями обеспечена невозможность смещения проектируемого фундамента.

Если проектом предусматривается возможность возведения сооружения непосредственно после устройства фундаментов до обратной засыпки грунтом пазух котлованов, следует производить проверку несущей способности основания, учитывая нагрузки, действующие в процессе строительства.

2.4. Расчетная схема системы сооружение — основание или фундамент — основание должна выбираться с учетом наиболее существенных факторов, определяющих напряженное состояние и деформации основания и конструкций сооружения (статической схемы сооружения, особенностей его возведения, характера грунтовых напластований, свойств грунтов основания, возможности их изменения в процессе строительства и эксплуатации сооружения и т.д.). Рекомендуется учитывать пространственную работу конструкций, геометрическую и физическую нелинейность, анизотропность, пластические и реологические свойства материалов и грунтов.

Допускается использовать вероятностные методы расчета, учитывающие статистическую неоднородность оснований, случайную природу нагрузок, воздействий и свойств материалов конструкций.

НАГРУЗКИ И ВОЗДЕЙСТВИЯ, УЧИТЫВАЕМЫЕ В РАСЧЕТАХ ОСНОВАНИЙ

2.5. Нагрузки и воздействия на основания, передаваемые фундаментами сооружений, должны устанавливаться расчетом, как правило, исходя из рассмотрения совместной работы сооружения и основания.

Учитываемые при этом нагрузки и воздействия на сооружение или отдельные его элементы, коэффициенты надежности по нагрузке, а также возможные сочетания нагрузок должны приниматься согласно требованиям СНиП по нагрузкам и воздействиям.

Нагрузки на основание допускается определять без учета их перераспределения надфундаментной конструкцией при расчете:

а) оснований зданий и сооружений III класса1;

б) общей устойчивости массива грунта основания совместно с сооружением;

в) средних значений деформаций основания;

г) деформаций основания в стадии привязки типового проекта к местным грунтовым условиям.

1 Здесь и далее класс ответственности зданий и сооружений принят согласно «Правилам учета степени ответственности зданий и сооружений при проектировании конструкций», утвержденным Госстроем СССР

2.6. Расчет оснований по деформациям должен производиться на основное сочетание нагрузок; по несущей способности — на основное сочетание, а при наличии особых нагрузок и воздействий — на основное и особое сочетание.

При этом нагрузки на перекрытия и снеговые нагрузки, которые согласно СНиП по нагрузкам и воздействиям могут относиться как к длительным, так и к кратковременным, при расчете оснований по несущей способности считаются кратковременными, а при расчете по деформациям — длительными. Нагрузки от подвижного подъемно-транспортного оборудования в обоих случаях считаются кратковременными.

2.7. В расчетах оснований необходимо учитывать нагрузки от складируемого материала и оборудования, размещаемых вблизи фундаментов.

2.8. Усилия в конструкциях, вызываемые климатическими температурными воздействиями, при расчете оснований по деформациям не должны учитываться, если расстояние между температурно-усадочными швами не превышает значений, указанных в СНиП по проектированию соответствующих конструкций.

2.9. Нагрузки, воздействия, их сочетания и коэффициенты надежности по нагрузке при расчете оснований опор мостов и труб под насыпями должны приниматься в соответствии с требованиями СНиП по проектированию мостов и труб.

НОРМАТИВНЫЕ И РАСЧЕТНЫЕ ЗНАЧЕНИЯ ХАРАКТЕРИСТИК ГРУНТОВ

2.10. Основными параметрами механических свойств грунтов, определяющими несущую способность оснований и их деформации, являются прочностные и деформационные характеристики грунтов (угол внутреннего трения j, удельное сцепление с, модуль деформации грунтов Е, предел прочности на одноосное сжатие скальных грунтов Rc и т.п.). Допускается применять другие параметры, характеризующие взаимодействие фундаментов с грунтом основания и установленные опытным путем (удельные силы пучения при промерзании, коэффициенты жесткости основания и пр.).

Примечание. Далее, за исключением специально оговоренных случаев, под термином «характеристики грунтов» понимаются не только механические, но и физические характеристики грунтов, а также упомянутые в настоящем пункте параметры.

2.11. Характеристики грунтов природного сложения, а также искусственного происхождения должны определяться, как правило, на основе их непосредственных испытаний в полевых или лабораторных условиях с учетом возможного изменения влажности грунтов в процессе строительства и эксплуатации сооружений.

2.12. Нормативные и расчетные значения характеристик грунтов устанавливаются на основе статистической обработки результатов испытаний по методике, изложенной в ГОСТ 20522-75.

2.13. Все расчеты оснований должны выполняться с использованием расчетных значений характеристик грунтов X, определяемых по формуле

где Хп — нормативное значение данной характеристики;

gg — коэффициент надежности по грунту.

Коэффициент надежности по грунту gg при вычислении расчетных значений прочностных характеристик (удельного сцепления с, угла внутреннего трения j нескальных грунтов и предела прочности на одноосное сжатие скальных грунтов Rc, а также плотности грунта r) устанавливается в зависимости от изменчивости этих характеристик, числа определений и значения доверительной вероятности a. Для прочих характеристик грунта допускается принимать gg = 1.

Примечание. Расчетное значение удельного веса грунта g определяется умножением расчетного значения плотности грунта на ускорение свободного падения.

2.14. Доверительная вероятность a расчетных значений характеристик грунтов принимается при расчетах оснований по несущей способности a = 0,95, по деформациям a = 0,85.

Доверительная вероятность a для расчета оснований опор мостов и труб под насыпями принимается согласно указаниям п. 12.4. При соответствующем обосновании для зданий и сооружений I класса допускается принимать большую доверительную вероятность расчетных значений характеристик грунтов, но не выше 0,99.

Примечания: 1. Расчетные значение характеристик грунтов, соответствующие различным значениям доверительной вероятности, должны приводиться в отчетах по инженерно-геологическим изысканиям.

2. Расчетные значения характеристик грунтов с, j и g для расчетов по несущей способности обозначаются cI, jI и gI, а по деформациям cII, jII и gII.

2.15. Количество определений характеристик грунтов, необходимое для вычисления их нормативных и расчетных значений, должно устанавливаться в зависимости от степени неоднородности грунтов основания, требуемой точности вычисления характеристики и класса здания или сооружения и указываться в программе исследований.

Количество одноименных частных определений для каждого выделенного на площадке инженерно-геологического элемента должно быть не менее шести. При определении модуля деформации по результатам испытаний грунтов в полевых условиях штампом допускается ограничиваться результатами трех испытаний (или двух, если они отклоняются от среднего не более чем на 25 %).

2.16. Для предварительных расчетов оснований, а также для окончательных расчетов оснований зданий и сооружений II и III классов и опор воздушных линий электропередачи и связи независимо от их класса допускается определять нормативные и расчетные значения прочностных и деформационных характеристик грунтов по их физическим характеристикам.

Примечания. 1. Нормативные значения угла внутреннего трения jn, удельного сцепления сп и модуля деформации E допускается принимать по табл. 1 — 3 рекомендуемого приложения 1. Расчетные значения характеристик в этом случае принимаются при следующих значениях коэффициента надежности по грунту.

в расчетах оснований по деформациям. gg = 1,

в расчетах оснований по несущей способности

для удельного сцепления. gg(c) = 1,5,

для угла внутреннего трения

песчаных грунтов. gg(j) = 1,1,

то же, пылевато-глинистых. gg(j) = 1,15

2 Для отдельных районов допускается вместо таблиц рекомендуемого приложения 1 пользоваться согласованными с Госстроем СССР таблицами характеристик грунтов, специфических для этих районов.

2.17. При проектировании оснований должна учитываться возможность изменения гидрогеологических условий площадки в процессе строительства и эксплуатации сооружения, а именно:

наличие или возможность образования верховодки;

естественные сезонные и многолетние колебания уровня подземных вод;

возможное техногенное изменение уровня подземных вод;

степень агрессивности подземных вод по отношению к материалам подземных конструкций и коррозионная активность грунтов на основе данных инженерных изысканий с учетом технологических особенностей производства.

2.18. Оценка возможных изменений уровня подземных вод на площадке строительства должна выполняться при инженерных изысканиях для зданий и сооружений I и II классов соответственно на срок 25 и 15 лет с учетом возможных естественных сезонных и многолетних колебаний этого уровня (п. 2.19), а также степени потенциальной подтопляемости территории (п. 2.20). Для зданий и сооружений III класса указанную оценку допускается не выполнять.

2.19. Оценка возможных естественных сезонных и многолетних колебаний уровня подземных вод производится на основе данных многолетних режимных наблюдений по государственной стационарной сети Мингео СССР с использованием результатов краткосрочных наблюдений, в том числе разовых замеров уровня подземных вод, выполняемых при инженерных изысканиях на площадке строительства.

2.20. Степень потенциальной подтопляемости территории должна оцениваться с учетом инженерно-геологических и гидрогеологических условий площадки строительства и прилегающих территорий, конструктивных и технологических особенностей проектируемых и эксплуатируемых сооружений, в том числе инженерных сетей.

2.21. Для ответственных сооружений при соответствующем обосновании выполняется количественный прогноз изменения уровня подземных вод с учетом техногенных факторов на основе специальных комплексных исследований, включающих как минимум годовой цикл стационарных наблюдений за режимом подземных вод. В случае необходимости для выполнения указанных исследований помимо изыскательской организации должны привлекаться в качестве соисполнителей специализированные проектные или научно-исследовательские институты.

2.22. Если при прогнозируемом уровне подземных вод (пп. 2.18 — 2.21) возможны недопустимое ухудшение физико-механических свойств грунтов основания, развитие неблагоприятных физико-геологических процессов, нарушение условий нормальной эксплуатации заглубленных помещений и т.п., в проекте должны предусматриваться соответствующие защитные мероприятия, в частности:

гидроизоляция подземных конструкций;

мероприятия, ограничивающие подъем уровня подземных вод, исключающие утечки из водонесущих коммуникаций и т.п. (дренаж, противофильтрационные завесы, устройство специальных каналов для коммуникаций и т.д.);

Читайте так же:  Налог на прибыль в схемах

мероприятия, препятствующие механической или химической суффозии грунтов (дренаж, шпунт, закрепление грунтов);

устройство стационарной сети наблюдательных скважин для контроля развития процесса подтопления, своевременного устранения утечек из водонесущих коммуникаций и т.д.

Выбор одного или комплекса указанных мероприятий должен производиться на основе технико-экономического анализа с учетом прогнозируемого уровня подземных вод, конструктивных и технологических особенностей, ответственности и расчетного срока эксплуатации проектируемого сооружения, надежности и стоимости водозащитных мероприятий и т.п.

2.23. Если подземные воды или промышленные стоки агрессивны по отношению к материалам заглубленных конструкций или могут повысить коррозионную активность грунтов, должны предусматриваться антикоррозионные мероприятия в соответствии с требованиями СНиП по проектированию защиты строительных конструкций от коррозии.

2.24. При проектировании оснований, фундаментов и других подземных конструкций ниже пьезометрического уровня напорных подземных вод необходимо учитывать давление подземных вод и предусматривать мероприятия, предупреждающие прорыв подземных вод в котлованы, вспучивание дна котлована и всплытие сооружения.

ГЛУБИНА ЗАЛОЖЕНИЯ ФУНДАМЕНТОВ

2.25. Глубина заложения фундаментов должна приниматься с учетом:

назначения и конструктивных особенностей проектируемого сооружения, нагрузок и воздействий на его фундаменты;

глубины заложения фундаментов примыкающих сооружений, а также глубины прокладки инженерных коммуникаций;

существующего и проектируемого рельефа застраиваемой территории;

инженерно-геологических условий площадки строительства (физико-механических свойств грунтов, характера напластований, наличия слоев, склонных к скольжению, карманов выветривания, карстовых полостей и пр.);

гидрогеологических условий площадки и возможных их изменений в процессе строительства и эксплуатации сооружения (пп. 2.17 — 2.24);

возможного размыва грунта у опор сооружений, возводимых в руслах рек (мостов, переходов трубопроводов и т.п.);

глубины сезонного промерзания грунтов.

2.26. Нормативная глубина сезонного промерзания грунта принимается равной средней из ежегодных максимальных глубин сезонного промерзания грунтов (по данным наблюдений за период не менее 10 лет) на открытой, оголенной от снега горизонтальной площадке при уровне подземных вод, расположенном ниже глубины сезонного промерзания грунтов.

2.27. Нормативную глубину сезонного промерзания грунта dfn, м, при отсутствии данных многолетних наблюдений следует определять на основе теплотехнических расчетов. Для районов, где глубина промерзания не превышает 2,5 м, ее нормативное значение допускается определять по формуле

где Mt — безразмерный коэффициент, численно равный сумме абсолютных значений среднемесячных отрицательных температур за зиму в данном районе, принимаемых по СНиП по строительной климатологии и геофизике, а при отсутствии в них данных для конкретного пункта или района строительства — по результатам наблюдений гидрометеорологической станции, находящейся в аналогичных условиях с районом строительства;

d0 — величина, принимаемая равной, м, для:

суглинков и глин — 0,23;

супесей, песков мелких и пылеватых — 0,28;

песков гравелистых, крупных и средней крупности — 0,30;

крупнообломочных грунтов — 0,34.

Значение d0 для грунтов неоднородного сложения определяется как средневзвешенное в пределах глубины промерзания.

2.28. Расчетная глубина сезонного промерзания грунта df, м, определяется по формуле

где dfn — нормативная глубина промерзания, определяемая по пп. 2.26 и 2.27;

kh — коэффициент, учитывающий влияние теплового режима сооружения, принимаемый: для наружных фундаментов отапливаемых сооружений — по табл. 1; для наружных и внутренних фундаментов неотапливаемых сооружений — kh = 1,1, кроме районов с отрицательной среднегодовой температурой.

Коэффициент kh при расчетной среднесуточной температуре воздуха в помещении, примыкающем к наружным фундаментам, °С

Пособия по проектированию оснований зданий и сооружений к снип 20201-83

  1. Головна
  2. Документ
  3. Основні законодавчі акти
  4. Пособие по проектированию фундаментов на естественном основании под колонны зданий и сооружений (к снип 2.03.01-84 и снип 2.02.01-83)

Пособие по проектированию фундаментов на естественном основании под колонны зданий и сооружений (к снип 2.03.01-84 и снип 2.02.01-83)

ГОСУДАРСТВЕННЫЙ ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПРОЕКТНЫЙ ИНСТИТУТ

ЛЕНИНГРАДСКИЙ ПРОМСТРОЙПРОЕКТ ГОССТРОЯ СССР

ПО ПРОЕКТИРОВАНИЮ ФУНДАМЕНТОВ

НА ЕСТЕСТВЕННОМ ОСНОВАНИИ

ПОД КОЛОННЫ ЗДАНИЙ И СООРУЖЕНИЙ

приказом Ленпромстройпроекта от 14 декабря 1984 г.

Центральный институт типового проектирования

Изменение в «Пособии по проектированию фундаментов на естественном основании под колонны зданий и сооружений (к СНиП 2.03.01—84 и СНиП 2.02.01—83)»

Внесено изменение ГПИ Ленпромстройпроекта, измененные пункты отмечены *.

Рекомендовано к изданию решением технического совета Ленпромстройпроекта Госстроя СССР.

Приведены указания по проектированию различных типов фундаментов и их расчет с помощью ЭВМ.

Для инженерно-технических работников проектных организаций.

При пользовании Пособием необходимо учитывать утвержденные изменения строительных норм и правил и государственных стандартов, публикуемые в журнале «Бюллетень строительной техники» Госстроя СССР, «Сборнике изменений к строительным нормам и правилам» и информационном указателе «Государственные стандарты СССР» Госстандарта СССР.

Пособие разработано к СНиП 2.03.01-84 «Бетонные и железобетонные конструкции» и СНиП 2.02.01-83 «Основания зданий и сооружений».

В Пособии содержатся основные положения по проектированию монолитных и сборных фундаментов под железобетонные и стальные колонны, их расчет и конструирование; приводятся указания по выбору оптимального варианта проектирования фундаментов, расчет и проектирование анкерных болтов и приемы армирования фундаментов.

Для облегчения труда проектировщиков приведены графики и таблицы для определения размеров фундаментов, примеры расчета и конструирования различных типов фундаментов.

Пособие разработано Ленпромстройпроектом — канд. техн. наук М.Б.Липницкий, В.А.Егорова; совместно с ЦНИИпромзданий — кандидаты техн. наук Н.А.Ушаков, А.М.Туголуков, Ю.В.Фролов; ПИ-1 — канд. техн. наук А.Л.Шехтман, А.В.Шапиро; НИИЖБом — кандидаты техн. наук Н.Н.Коровин, М.Б.Краковский; НИИОснований — д-р техн. наук Е.А.Сорочан.

Замечания и предложения по содержанию Пособия просьба направлять по адресу: 186190, Ленинград, Ленинский пр., 160, Ленпромстройпроект.

1. ОБЩИЕ УКАЗАНИЯ

1.1. Настоящее Пособие, разработанное к СНиП 2.03.01-084 и СНиП 2.02.01-83, распространяется на проектирование отдельных железобетонных фундаментов на естественном основании под колонны зданий и сооружений.

1.2. Проектирование оснований зданий и сооружений, то есть подбор размеров подошвы фундамента из расчета оснований, рекомендуется выполнять в соответствии со СНиП 2.02.01-83 и «Пособием по проектированию оснований зданий и сооружений» (к СНиП 2.02.01-83).

1.3. Нагрузки и воздействия на основания, передаваемые фундаментами сооружений, должны устанавливаться расчетом, как правило, исходя из рассмотрения совместной работы сооружения и основания или фундамента и основания. Учет нагрузок и воздействий в расчетах оснований рекомендуется выполнять в соответствии со СНиП 2.02.01-83 и «Пособием по проектированию оснований зданий и сооружений».

1.4. Проектирование фундаментов, эксплуатирующихся в агрессивной среде, производится с учетом требований СНиП 2.03.11-85.

1.5. Применяемые в строительстве железобетонные фундаменты могут быть представлены следующими типами:

монолитные с применением многооборачиваемой инвентарной опалубки (черт. 1, 2);

сборные железобетонные из одного блока (черт. 3);

сборно-монолитные (черт. 4, 5).

Черт. 1. Монолитные фундаменты стаканного типа со ступенчатой плитной частью

Черт. 2. Монолитные фундаменты с пирамидальной плитной частью

Черт. 3. Сборные железобетонные фундаменты а — пирамидальные; б — с уширением плитной части

Черт. 4. Сборно-монолитные фундаменты с подколонниками рамного типа

а — для зданий без подвала; б — для зданий с подвалом

Черт. 5. Сборно-монолитные фундаменты с подколонником, состоящим из сборных плит и монолитного бетона

1 — сборные железобетонные плиты; 2 — монолитный бетон; 3 — металлические скрутки; 4 — петлевые выпуски

При этом рекомендуется расширять область применения монолитных конструкций фундаментов с учетом повышения технического уровня монолитного фундаментостроения. Сборные и сборно-монолитные фундаменты рекомендуется применять при технико-экономическом обосновании, подтверждающем целесообразность их применения, в соответствии с «Руководством по выбору проектных решений фундаментов».

2. РАСЧЕТ ОТДЕЛЬНО СТОЯЩИХ ФУНДАМЕНТОВ ПОД ЖЕЛЕЗОБЕТОННЫЕ КОЛОННЫ

2.1. Расчет прочности фундаментов и определение ширины раскрытия трещин производится в соответствии с требованиями СНиП 2.02.01-83 «Основания зданий и сооружений», СНиП 2.03.01-84 «Бетонные и железобетонные конструкции», СНиП 2.01.07-85 «Нагрузки и воздействия», а также «Пособия по проектированию бетонных и железобетонных конструкций из тяжелых и легких бетонов без предварительного напряжения арматуры».

2.2. Расчет фундаментов по прочности включает определение высоты плитной части фундамента, размеров ступеней, арматуры плитной части, расчет поперечных сечений подколонника и его стаканной части и производится на основное или особое сочетание расчетных нагрузок, вводимых в расчет с коэффициентом надежности по нагрузке f > 1.

2.3. Расчет элементов фундамента (плитной части и подколонника) по образованию и раскрытию трещин производится на основное или особое сочетание расчетных нагрузок при f = 1.

2.4. Исходными данными для расчета фундаментов по прочности, кроме сочетаний расчетных нагрузок, являются:

размеры в плане b и l подошвы плитной части фундамента, определяемые в соответствии с п. 1.2;

полная высота фундамента h, определяемая глубиной заложения и отметкой обреза фундамента;

сечения колонны bc, lc и подколонника в плане bcf, lcf.

ОПРЕДЕЛЕНИЕ ВЫСОТЫ ПЛИТНОЙ ЧАСТИ ФУНДАМЕНТА И РАЗМЕРОВ СТУПЕНЕЙ РАСЧЕТОМ НА ПРОДАВЛИВАНИЕ

2.5. Минимальная высота плитной части фундамента при соотношении сторон его подошвы b/l  0,5 определяется из расчета на продавливание. При этом продавливающая сила должна быть воспринята бетонным сечением плитной части фундамента, как правило, без постановки поперечной арматуры. В стесненных условиях (при ограничении высоты фундамента) допускается поперечная арматура.

2.6. Следует различать две схемы расчета на продавливание в зависимости от вида сопряжения фундамента с колонной:

1-я — при монолитном сопряжении колонны с фундаментом (черт. 6, а) или подколонника с плитной частью фундамента при высоте подколонника hcf  0,5 (lcf — lc) (черт. 6, б), а также при стаканном сопряжении сборной колонны с высоким фундаментом — при высоте подколонника, удовлетворяющей условию hcf — dp  0,5 (lcf — lc) (черт. 6, в). В этом случае продавливание плитной части рассматривается от низа монолитной колонны или подколонника на действие продольной силы N и изгибающего момента М;

Читайте так же:  Административная ответственность видеоурок

2-я — при стаканном сопряжении сборной колонны с низким фундаментом — при высоте подколонника, удовлетворяющей условию hcf — dp  0,5 (lcf — lc) (черт. 7). В этом случае фундаменты рассчитываются на продавливание колонной от дна стакана и на раскалывание от действия только продольной силы Nc (п. 2.20).

Черт. 6. Виды сопряжений фундамента с колонной по 1-й схеме расчета на продавливание

а — монолитное сопряжение колонны с плитной частью фундамента; б — то же при высоте подколонника hcf  0,5 (lcf — lc); в — стаканное сопряжение колонны с высоким фундаментом при hcf — dp  0,5 (lcf — lc)

Черт. 7. Сопряжение сборной колонны с низким фундаментом при hcf — dp  0,5 (lcf — lc)

2.7. При опирании на фундамент двух или более колонн, а также двухветвевых колонн продавливание рассматривается при воздействии на фундамент условной колонны, размеры которой равны габаритам по наружным граням колонн, а глубина стакана принимается в уровне наиболее заглубленной колонны (черт. 8).

Черт. 8. Схемы продавливания фундамента при опирании на него двух колонн

а — расположение колонн в одном уровне; б — расположение колонн в разных уровнях; 1 — внутренняя грань стакана; 2 — наружная грань условной колонны

Расчет на продавливание по схеме 1 (см. черт. 6)

2.8. Расчет на продавливание плитной части центрально-нагруженных квадратных железобетонных фундаментов производится из условия

F  Rbt um h0,pl ,(1)

где F — продавливающая сила;

Rbt — расчетное сопротивление бетона осевому растяжению, принимаемое с необходимыми коэффициентами условий работы b2 и b3 в соответствии с табл. 15 СНиП 2.03.01-84 как для железобетонных сечений;

um — среднеарифметическое значение периметров верхнего и нижнего оснований пирамиды, образующейся при продавливании в пределах рабочей высоты сечения h0,pl

um = 2 (bc + lc + 2 h0,pl) .(2)

При определении величин um и F предполагается, что продавливание происходит по боковой поверхности пирамиды, меньшим основанием которой служит площадь действия продавливающей силы (площадь сечения колонны или подколонника), а боковые грани наклонены под углом 45° к горизонтали (черт. 9).

Черт. 9. Схема образования пирамиды продавливания в центрально-нагруженных квадратных железобетонных фундаментах

В формуле (2) и последующих формулах раздела величины bc, lc заменяются размерами в плане сечения подколонника bcf, lcf, если продавливание происходит из нижнего обреза подколонника.

Величина продавливающей силы F принимается равной величине продольной силы N, действующей на пирамиду продавливания, за вычетом величины реактивного давления грунта, приложенного к большему основанию пирамиды продавливания (считая до плоскости расположения растянутой арматуры).

2.9. Расчет на продавливание центрально-нагруженных прямоугольных, внецентренно нагруженных квадратных и прямоугольных фундаментов (черт. 10) также производится в соответствии с п. 2.8 и условием (1). При этом рассматривается условие прочности на продавливание только одной наиболее нагруженной грани пирамиды продавливания.

Величина продавливающей силы F в формуле (1) принимается равной

где Ao — часть площади основания фундамента, ограниченная нижним основанием рассматриваемой грани пирамиды продавливания и продолжением в плане соответствующих ребер (многоугольник abcdeg, см. черт. 10).

Черт. 10. Схема образования пирамиды продавливания в центрально-нагруженных прямоугольных, а также внецентренно нагруженных квадратных к прямоугольных фундаментах

Ао = 0,5b (l — lc — 2h0,pl) — 0,25 (b — bc — 2h0,pl)2 ,(4)

при b — bc — 2h0,pl  0 (черт. 11) последний член в формуле (4) не учитывается;

Черт. 11. Схема образования пирамиды продавливания во внецентренно нагруженных прямоугольных фундаментах при 0,5 (b — bc)  h0,pl

рmax — максимальное краевое давление на грунт от расчетной нагрузки, приложенной на уровне верхнего обреза фундамента (без учета веса фундамента и грунта на его уступах);

при расчете внецентренно нагруженного фундамента в плоскости эксцентриситета

при расчете в перпендикулярной плоскости, а также для центрально-нагруженного фундамента

Средний периметр пирамиды продавливания um в формуле (1) заменяется средним размером проверяемой грани bm и вычисляется по формулам:

при b — bc  2h0,pl (см. черт. 10) bm = bc + h0,pl ;(7)

при b — bc  (см. черт. 11) bm = 0,5 (b + bc) ,(8)

где bc — размер сечения колонны или подколонника, являющийся верхней стороной рассматриваемой грани пирамиды продавливания.

2.10. При действии на фундамент изгибающих моментов в двух направлениях расчет на продавливание выполняется раздельно для каждого направления.

2.11. Рабочую высоту h0,pl центрально-нагруженных, внецентренно нагруженных квадратных и прямоугольных фундаментов можно определить по графику прил. 1, составленному на основании условия 1.

2.12. Рабочую высоту h0,pl внецентренно нагруженных фундаментов можно определить также по формулам:

при 0,5 (b — bc) > h0,pl (см. черт. 10)

где безразмерная величина r = Rbt / pmax ;

cl = 0,5 (l — lc), cb = 0,5 (b — bc) ;

при 0,5 (b — bc)  h0,pl (см. черт. 11)

2.13. Высота ступеней назначается в зависимости от полной высоты плитной части фундамента, которую можно получить добавлением толщины защитного слоя к рабочей высоте плитной части фундамента h0,pl и приведением полной высоты h к модульному размеру.

Высоту ступеней рекомендуется назначать в соответствии с табл. 4 (см. п. 4.7).

2.14. Вылеты ступеней фундамента определяются расчетом но продавливание в соответствии с положениями п. 2.9. Вылет нижней ступени c1 (черт. 12) можно определить, предварительно задавшись шириной второй ступени b1 из условия

F  Rbt h01 bm1 .(11)

Черт. 12. Схема образования пирамиды продавливания в нижней ступени прямоугольных железобетонных фундаментов

Величина силы F и величина среднего размера грани пирамиды продавливания первой ступени bm1 принимаются равными:

при b — b1  2h01 bm1 = b1 + h01 ;(13)

при b — b1  2h01 bm1 = 0,5 (b + b1 0 ,(14)

где А01 — площадь многоугольника a1b1u1d1e1g1, равная

А01 = 0,5b (l — l1 — 2h01) — 0,25 (b — b1 — 2h01)2 ;(15)

при b — b1 — 2h01  0 последний член формулы (15) не учитывается.

2.15. Вылет нижней ступени с1 можно получить при условии равенства вылетов с1 = с2 (см. черт. 12) по формуле

с1 = с2 = 0,5b + (1 + r)h01 — .(16)

Вылеты ступеней, при условии их равенства в двух направлениях (например, с1 = с2), рекомендуется определять с помощью прил. 2, где приведены модульные размеры вылетов ступеней с для фундаментов из бетона класса В15 (Rbt = 0,75 МПа и b2 = 1). При бетоне других марок и других значений b2 величины максимальных давлений грунта рmax умножаются на отношение b2 Rbt/0,75, где величина Rbt — в МПа.

2.16. Вылет нижней ступени c1 принимается не более величин, указанных в прил. 3.

2.17. Вылет второй ступени фундамента определяется расчетом на продавливание аналогично вылету нижней ступени (пп. 2.14, 2.15). При этом можно предварительно задаться размерами в плане третьей ступени пересечением линии АВ (см. черт. 12) с линией, ограничивающей высоту второй ступени, по формулам:

Еще статьи:

  • Договор муп киевский жилсервис Для получения информации об отсутствии тепло, водо и электроснабжения обращайтесь на участок, обслуживающий ваш дом, Время работы участков с 8-00 до 17-00 в будние дни , и с 8-00 до 12-00 в субботу. Перерыв c 12-00 до 13-00 в будние дни. Участок 1 тел.25-63-00 Участок 2 тел.61-54-15 […]
  • Госпошлина в арбитражный суд калькулятор госпошлины 2019 год москва Калькулятор расчета госпошлины Предназначен для расчета суммы государственной пошлины, которую необходимо оплатить при подаче искового или иного заявления в суд общей юрисдикции или арбитражный суд, а также для ознакомления с суммами государственных пошлин по обращениям за иными […]
  • Когда выплачиваются налог на прибыль Сроки сдачи отчетности и уплаты налогов (взносов) Годовая бухгалтерская (финансовая) отчетность представляется в налоговую инспекцию не позднее трех месяцев после окончания отчетного периода (пп. 5 п. 1 ст. 23 НК РФ, ч. 2 ст. 18 Федерального закона от 06.12.2011 № 402-ФЗ) Аудиторское […]
  • Приказ фнс россии от 25122006 n саэ Приказ Федеральной налоговой службы (ФНС России) от 23 июля 2012 г. N ММВ-7-2/[email protected] г. Москва "О внесении изменений в приказы Федеральной налоговой службы от 6 марта 2007 г. N ММ-3-06/[email protected], от 31 мая 2007 г. N ММ-3-06/[email protected] и от 25 декабря 2006 г. N САЭ-3-06/[email protected]" Зарегистрирован в Минюсте […]
  • Купон на проживание в гостинице в москве КупонГид Мастер-классы по наращиванию ресниц, оформлению бровей и макияжу. Скидка 63% Скидка: 63% Цена: 1860 руб. г. Москва, ул. Большая Семёновская, д. 40 Можно купить до 06.05.2019 Шугаринг или биоэпиляция в 3 салонах «Мастерская красоты»: подмышечных впадин, зоны глубокого […]
  • Мировой суд 49 г железнодорожный московской области Судебный участок мирового судьи №49 (Железнодорожный суд) Мировой судья Ковешников Александр Игоревич Руководитель аппарата мирового судьи Викулина Елена Валентиновна Секретарь суда Черкасова Анна Леонидовна Секретарь судебного заседания Борщина Елена Валентиновна Телефон: 8 (495) […]